04 Feb 2013
2 MINS READ
“We can’t solve problems by using the same kind of thinking we used when we created them.” – The famous quote attributed to Albert Einstein applies as much to Business Intelligence & Analytics as it does to other things. Many organizations that turn to BI&A for help on strategic business concerns such as increasing customer churn, drop in quality levels, missed revenue opportunities face disappointment. One of the important reasons for this is that the data that can provide such insights is just not there. For example, to understand the poor sales performance in a particular region during a year, it will not just help to have data about our sales plan, activities, opportunities, conversions and sales achieved / missed, it will also require understanding of other disruptive forces such as competitors promotions, change in customer preferences, new entrants or alternatives.
Thomas Davenport, a household name in the Business Intelligence & Analytics community, in his book ‘Analytics at Work’, explains the analytical DELTA (Data, Enterprise, Leadership, Targets and Analysts), a framework that organizations could adopt to implement analytics effectively for better business decisions and results. He emphasizes that besides the necessity of having clean, integrated and enterprise-wide data in a warehouse, it is also important that the data enables to measure something new and important.
Now, measuring something new and important cannot just be arbitrary. It requires be in line with the organizational strategy so that this measurement will have an impact on strategic decision-making. A proactive approach to Data Warehousing must then include such measurements and identify the necessary datasets that enable the measurement. For instance, an important element of a company’s strategy to keep its cost down could be to standardize on a selected few suppliers. To identify the right suppliers and make this consolidation work, it is important to analyze procurement history, which under normal circumstances might be treated like a throw-away operational Accounts Payable data whose value expires once paid. It is even possible that an organization does not currently have (or) have access to the necessary data, but this knowledge is essential to guide the efforts and initiatives of data warehousing.
To summarize, building an effective data warehouse requires a proactive approach. A proactive approach essentially implies that the organization makes a conscious effort to understand the business imperatives for the data warehouse; identify new metrics that best represent the objectives and proactively seek the data that is necessary to support the metrics. This approach can produce radically different results compared to the reactive approach of analyzing the data that is routinely available.
BI & Analytics
13 Nov 2020
07 Sep 2020
11 Jun 2020
28 May 2020
08 May 2020
24 Apr 2020
13 Apr 2020
06 Apr 2020
31 Mar 2020
26 Mar 2020
23 Jun 2017
06 Aug 2015
13 Jul 2015
28 Oct 2014
17 Apr 2014
24 Mar 2014
22 Jan 2014
20 Dec 2013
01 Nov 2013
26 Sep 2013
03 Sep 2013
26 Aug 2013
29 Apr 2013
04 Mar 2013
21 Feb 2013
03 Jan 2013
26 Nov 2010
19 Mar 2009
Digital Assurance
02 Jan 2012
17 Feb 2012
Infrastructure Mgmt. Services
02 Mar 2012
06 Feb 2013
Digital Assurance, Enterprise Solutions
14 Feb 2013
18 Feb 2013
27 Feb 2013
Others
01 Mar 2013
Enterprise Solutions
05 Mar 2013
18 Mar 2013
Digital Assurance, Enterprise Solutions, Others
22 Mar 2013
12 Apr 2013
26 Apr 2013
13 May 2013
11 Jun 2013
17 Jun 2013
25 Jun 2013
19 Aug 2013
27 Aug 2013
10 Sep 2013
19 Sep 2013
24 Sep 2013
30 Sep 2013
01 Oct 2013
03 Oct 2013
19 Nov 2013
Enterprise Solutions, Manufacturing and Consumer
28 Nov 2013
03 Dec 2013
03 Jan 2014
27 Jan 2014
31 Jan 2014
12 Feb 2014
13 Feb 2014
20 Mar 2014
11 Jun 2014
Manufacturing and Consumer
26 Jun 2014
30 Jun 2014
10 Jul 2014
15 Jul 2014
16 Jul 2014
18 Jul 2014
26 Aug 2015
28 Sep 2015
07 Oct 2015
26 Oct 2015
07 Mar 2016
22 Mar 2016
13 May 2016
23 May 2016
Application Transformation Mgmt.
11 Jul 2016
25 Aug 2016
03 Sep 2016
14 Sep 2016
15 Nov 2016
22 Nov 2016
25 Nov 2016
Business Process Services
25 Apr 2017
Banking and Financial Services
18 May 2017
30 May 2017
27 Jun 2017
18 Jul 2017
26 Oct 2017
Healthcare, Insurance
28 Nov 2017
11 Dec 2017
25 Jan 2018
21 Feb 2018
14 Mar 2018
( Mandatory field * )
The information you provide will be used in accordance with our terms ofPrivacy Policy
Please Check on "I Agree" to register for the blog.